
Investigating Solutions to Spatially Indeterminate Data: Methods of Areal Interpolation and Spatial Allocation

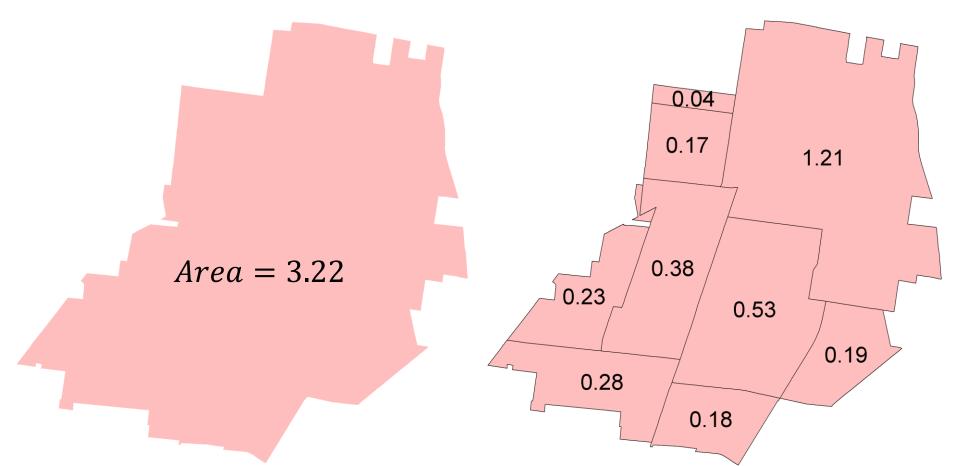
Matt Ruther Urban and Public Affairs

September 30, 2015

Different Zoning Systems

Areal Interpolation Basics

- Data is often enumerated within different zoning systems (e.g., different boundaries)
- Areal interpolation is a collection of methods to convert data between zoning systems
 - Small area estimates
 - Population data or other data
- Goal of this research is to extend these methods to make them more accurate and generalizable


Prior Work

- As a method to estimate small area populations, areal interpolation is well established (Markoff & Shapiro 1973; Tobler 1979; Goodchild & Lam 1980)
- Increasingly, research is looking at ways to increase accuracy through the use of ancillary data (Eicher & Brewer 2001; Mennis & Hultgren 2006; Langford 2007; Lin, Cromley, & Zhang 2011; Qiu, Zhang, & Zhou 2012)
- The ancillary data that is used to spatially refine the estimates include land cover data (Mennis 2003; Holt, Lo, & Hodler 2004), parcel data (Tapp 2010), and street network data (Reibel and Bufalino 2005)

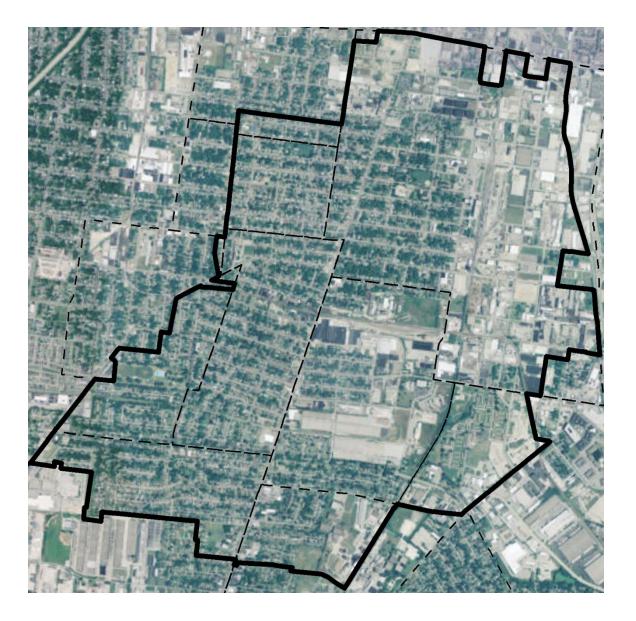
Example

ZIP 40210 9 intersecting census tracts S 32nd S 31st Maple St S 33rd 001800 Howard St W Kentucky St ood Ave 001700 /ictory Grand Ave Park 002700 Hale Ave S Osage Ave 들 Virginia Ave 12th St Dumesnil St. W Oak St S St Wilson Ave Dumes Beech St W Ormsby Ave 001500 St Woodla 001600 uthern Ave lard A StLouis Ave 002800 ing Ave 13th St S W Hill St W Shipp A 11th 003500 5 23rd St 16th 2054 Algonquin Pky 5 Dixdale Ave S Oregon Ave Bernheim Ln 012801 Industry Rd Harold Ave 012802 Millers Ln-Target Zones Source Zone

Areal Weighting

- Population within target zone is estimated as % of source zone overlap with target zone
- Based only on geography!
- Foundation for most other methods

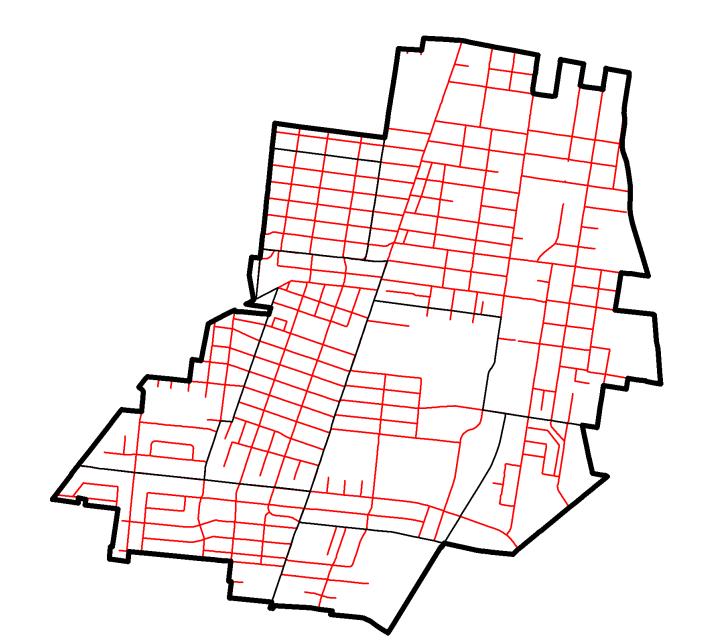
Density Weighting



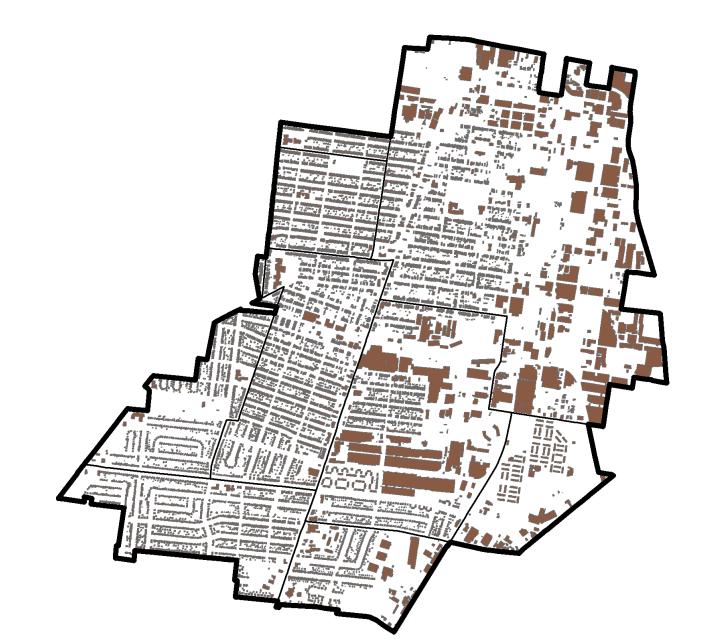
 Population "density" within target/source intersection is estimated via AW using whole target zone

Improving Areal Interpolation

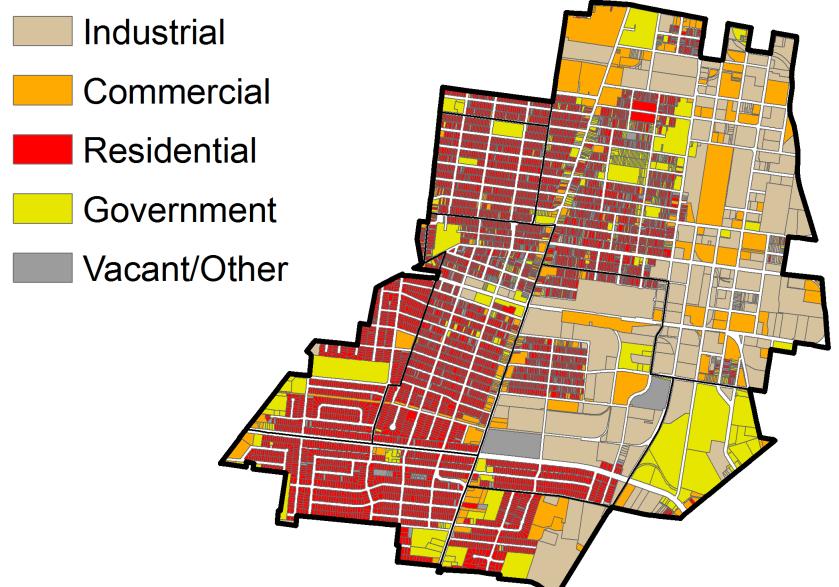
- There are other "simple" methods, but density weighting has been shown to be the most accurate
- However, density weighting is still based on the assumption that population is evenly distributed in the target zones
- "Intelligent" methods of areal interpolation use ancillary data to correct this issue


Ancillary Data

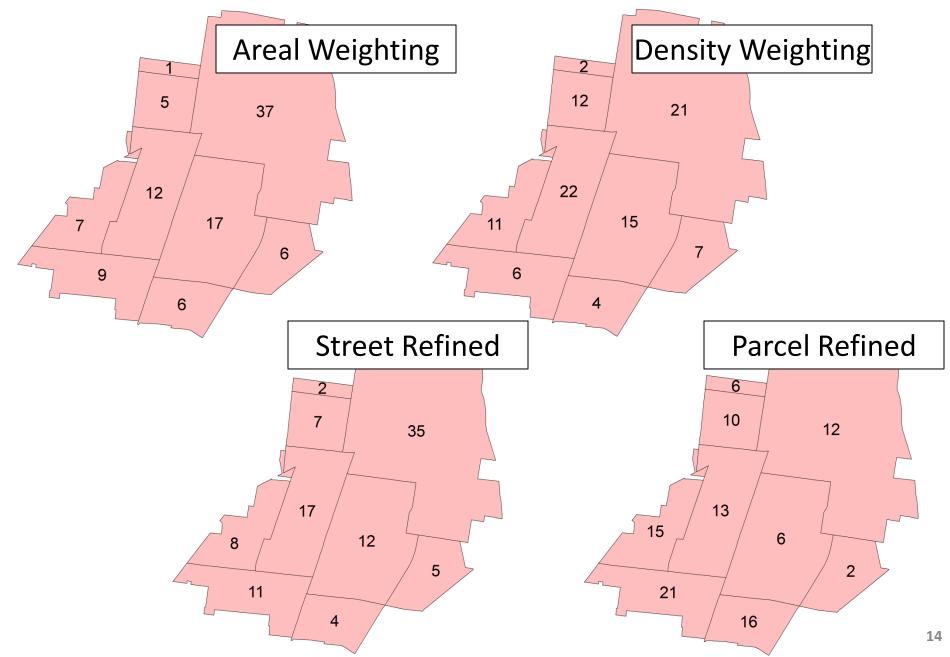
Spatial Refinement Using NLCD


Open Space Developed
Low Density Developed
Medium Density Developed
High Density Developed
Park/Greenspace

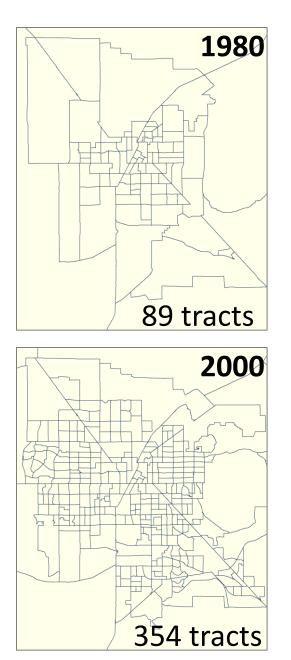
Spatial Refinement Using Street Coverage

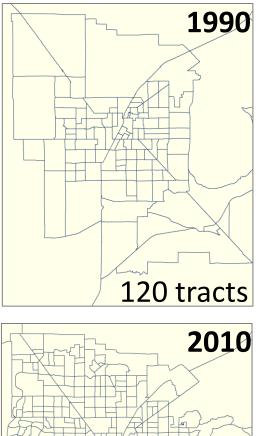


11


Spatial Refinement Using Building Footprints

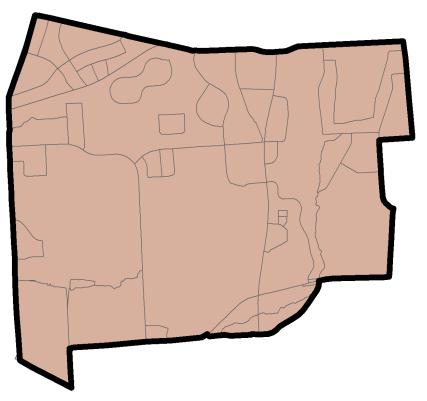
Spatial Refinement Using Parcels

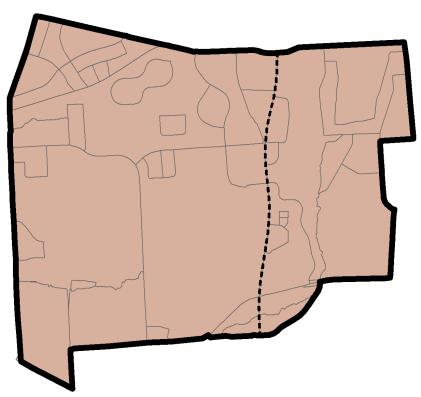

Comparison of Methods (100 Deaths)



Our Work

Temporal Incompatibilities in Zoning Systems



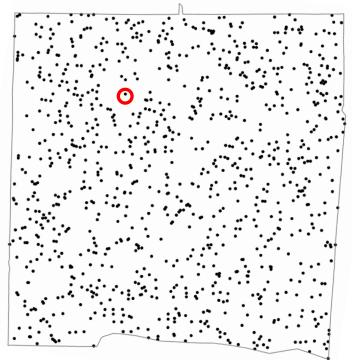


Validating the Results

2000 Tract 2.00 w/2000 Blocks

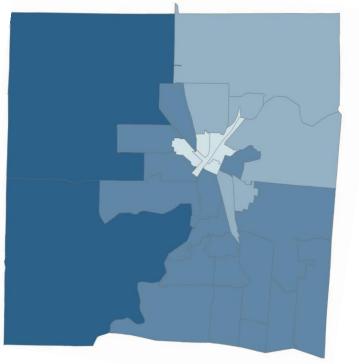
2010 Tracts 2.01 and 2.02 w/2000 Blocks

Median Standardized Absolute Error by County and Interpolation Method

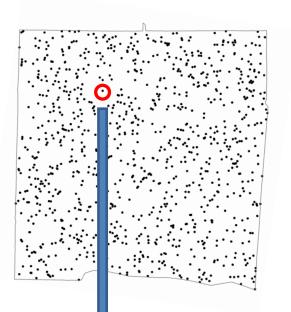

County	Tracts	Areal Weighting	Parcel- Refined Areal Weighting	Density Weighting	Parcel- Refined Density Weighting
Allegheny (Pittsburgh)	151	0.022	0.013	0.025	0.015
Clark (Las Vegas)	241	0.434	0.293	0.307	0.228
Hennepin (Minneapolis)	53	0.053	0.035	0.027	0.027
Wayne (Detroit)	79	0.064	0.052	0.037	0.023

Future Directions

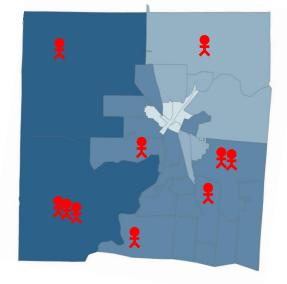
- Identify ways in which parcel data and its wealth of attributes (structure size, value, built date) can be better exploited
- Incorporate alternative ancillary data types, such as census tract/block attributes, into the interpolation
- Evaluate area interpolation methods in the context of public health data
- *Validate* the interpolated public health data


Takeaway....

Spatial Allocation of Microdata


Microdata (NCHS/PUMS) Individuals

Coarse geographic scale Extensive demographic detail


Summary Data Tracts (or sub-county areas) Fine geographic scale Limited demographic detail

In Pictures

Probabilistically impute new weights for each PUMS record for **each** of the tracts within the PUMA/county, based on the known populations of the tracts and some attributes (constraining variables) of the individual.

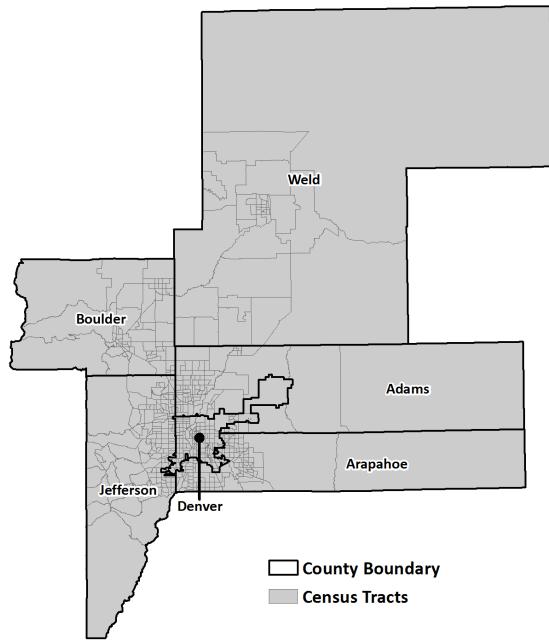
Does not "place" individuals!

1 NCHS/PUMS Record (Weight = 10)

Maximum Entropy Estimation

$$\max \sum_{i} \sum_{j} (w_{ij}) \log \left(\frac{w_{ij}}{d_{ij}}\right) \text{ subject to } \sum_{i} w_{ij} x_{ik} = X_{jk}$$

- *i* = *individual*
- j = tract
- k = attribute
- d = initial sampling weight
- w = imputed sampling weight
- *x* = *individual demographic characteristics*
- *X* = *tract aggregate demographic characteristics*


Prior Research

- Reweighting: Statistically adjusting the sampling weights for each HH in a survey to fit a known population distribution (Johnston & Pattie 1993; Mrozinski & Cromley 1999; Simpson & Tranmer 2005; Ballas et al. 2005)
- Complementary topic in geography is dasymetric mapping (Semenov-Tian-Shansky 1928; Wright 1936; Eicher & Brewer 2001; Mennis 2006; Riebel & Agrawal 2007)
- Much research on Census microdata reweighting has focused on UK and Australia – generally, lack 100% validation (Johnston & Pattie 1993; Williamson, Birkin, & Rees 1998; Melhuish, Blake, & Day 2002; Ballas et al. 2005; Smith, Clarke, & Harland 2009)

Goals of the Research

- Small area estimates useful in the analysis of sociodemographic processes at the local level (e.g., public health, transportation, emergency planning)
- These estimates may be used to assess the needs for schools, parks, public transportation, and health-prevention programs, and to evaluate the impact of public policies
- While some of these estimates can be made with a survey instrument, most others would need to rely on population estimation methods
- Is there ANY utility to this method in the context of health data?

Study Area and Data

- Mortality data from NCHS for 2000-2003
- Tract-level data from Census for 2000

County Population (2000)

County	Total	% 75+	% Male	% Black	% Hisp	Tracts
Adams	333,219	3	50	11	27	85
Arapahoe	454,271	4	51	15	11	121
Boulder	273,758	4	51	7	10	68
Denver	516,902	6	50	19	30	136
Jefferson	493,797	5	50	7	9	133
Weld	166,893	4	50	5	26	37

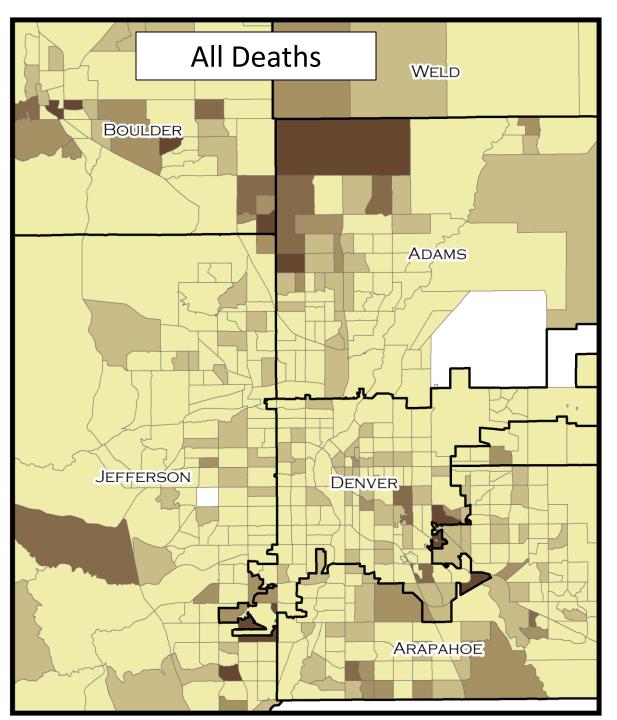
Deaths, All Causes (2000-2003)										
County	Total	% 75+	% Male	% Black	% Hisp					
Adams	6,447	46	50	5	5					
Arapahoe	8,378	56	48	8	8					
Boulder	4,257	60	45	2	2					
Denver	13,334	55	50	14	14					
Jefferson	9,710	58	48	2	2					
Weld	3,472	55	50	1	1					

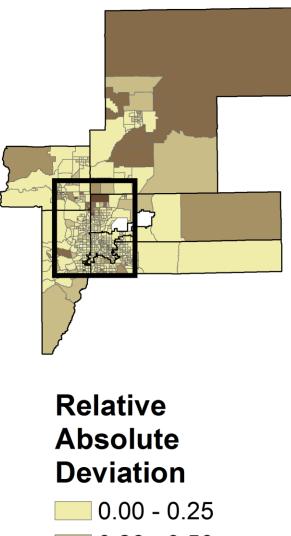
Male	Black	Hisp	Age	Census	Deaths	Synthetic
0	1	0	<35	53,999	181	53,818
0	1	0	35-44	22,597	263	22,334
0	1	0	45-54	22,128	492	21,636
	•	•	•			
1	0	1	65-74	204	1	203
1	0	1	75-84	74	4	70
1	0	1	85+	12	1	11

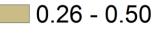
- Create 56 groupings determined by gender (male/female), race (black/non-black), ethnicity (Hispanic/non-Hispanic), and age (<35, 35-44, 45-54, 55-64, 65-74, 75-84, 85+)
- Generate synthetic living population based on Census count of population and deaths during 2000-2003

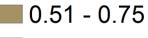
	Μ	В	Н	Α	D	Tract 1	Tract 2	Tract 3	•••	Total
1	1	0	0	73	1	0.0055	0.0062	0.0078	•••	1.0000
2	0	1	0	59	0	0.0055	0.0062	0.0078	•••	1.0000
3	1	1	1	72	0	0.0055	0.0062	0.0078	•••	1.0000
4	0	0	0	81	1	0.0055	0.0062	0.0078	•••	1.0000
	•	•								
Ν	0	0	1	35	0	0.0055	0.0062	0.0078	•••	1.0000
				То	tal	2,850	3,228	4,047	•••	516,902

	Μ	В	Н	А	D	Tract 1	Tract 2	Tract 3	••••	Total
1	1	1	0	73	1	0.0039	0.0060	0.0047	•••	0.9779
2	0	1	0	59	0	0.0053	0.0070	0.0052	•••	1.0041
3	1	1	1	72	0	0.0030	0.0068	0.0198	•••	1.0647
4	0	0	0	81	1	0.0021	0.0027	0.0058	•••	0.9025
		•			:					
Ν	0	0	1	35	0	0.0036	0.0054	0.0113	•••	0.9825
				То	tal	2,850	3,228	4,047		516,902

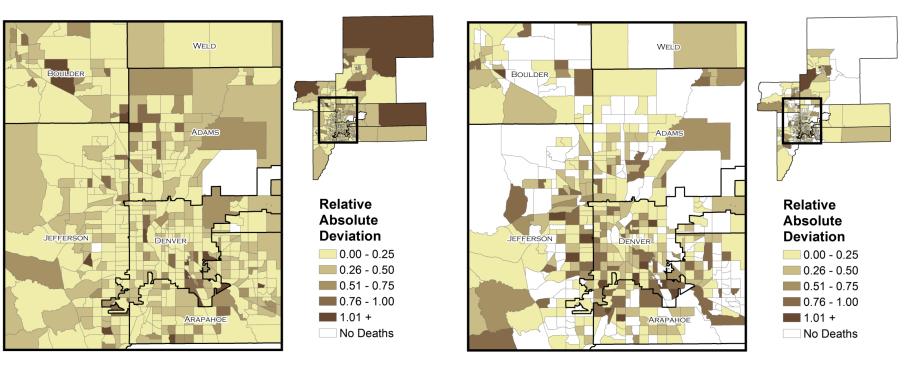

Validation

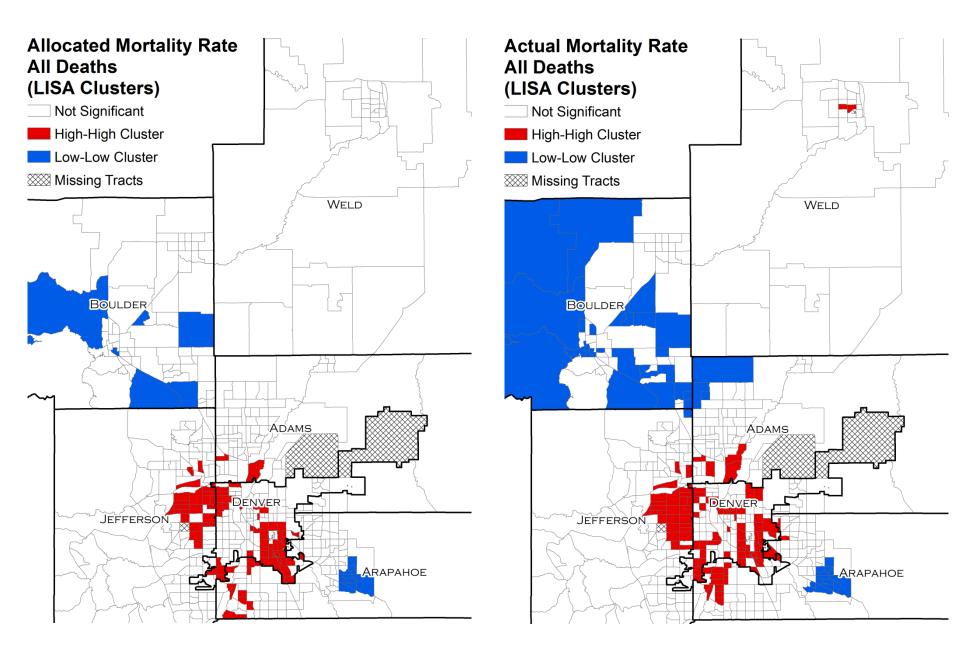

- Tract-level mortality counts by age, sex, race, and ethnicity from Colorado Department of Public Health
- Compare actual counts to allocated counts on a number of tract-level (CV) and aggregate-level (RMSE) metrics
- Assess spatial patterns in the accuracy of the allocation, to improve model


Validation Results


Denver County (135 tracts)										
Measure	All	Cancer	Heart	Stroke	Diabetes	Flu				
Deaths	13,334	2,857	3,020	762	319	285				
Spearman	0.86	0.81	0.82	0.67	0.50	0.56				
MRAD	0.23	0.28	0.29	0.51	0.73	0.66				

Total Metropolitan Area (576 tracts)										
Measure	All	Cancer	Heart	Stroke	Diabetes	Flu				
Deaths	45,598	10,192	10,294	2,811	1,042	1,015				
Spearman	0.90	0.84	0.86	0.74	0.49	0.61				
MRAD	0.24	0.27	0.33	0.51	0.85	0.72				


No Deaths


0.76 - 1.00

Validation Results (Cause-Specific)

Cancer Deaths

Flu Deaths

Future Directions

- Does it work?!
- How to incorporate additional constraints?
- Improve model by combining similar tracts?
- Evaluate the use of morbidity data (additional problems....)

Investigating Solutions to Spatially Indeterminate Data: Methods of Areal Interpolation and Spatial Allocation

Matt Ruther Urban and Public Affairs <u>matthew.ruther@louisville.edu</u>

September 30, 2015

